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MAGNETOHYDRODYNAMIC FLOW IN AN INFINITE 
CHANNEL 

MUNEVVER SEZGIN* 

Department of Mathematics, Middle East Technical University, Ankara. Turkey 

SUMMARY 

The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in an 
infinite channel, under an applied magnetic field has been investigated. The MHD flow between two parallel 
walls is of considerable practical importance because of the utility of induction flowmeters. The walls of the 
channel are taken perpendicular to the magnetic field and one of them is insulated, the other is partly 
insulated, partly conducting. An analytical solution has been developed for the velocity field and magnetic 
field by reducing the problem to the solution of a Fredholm integral equation of the second kind, which has 
been solved numerically. Solutions have been obtained for Hartmann numbers M up to 200. All the infinite 
integrals obtained are transformed to finite integrals which contain modified Bessel functions of the second 
kind. So, the difficulties associated with the computation of infinite integrals with oscillating integrands which 
arise for large M have been avoided. It is found that, as M increases, boundary layers are formed near the non- 
conducting boundaries and in the interface region for both velocity and magnetic fields, and a stagnant 
region in front of the conducting boundary is developed for the velocity field. Selected graphs are given 
showing these behaviours. 
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INTRODUCTION 

The study of flows of conducting fluids in channels and ducts in the presence of a transverse 
magnetic field is important, owing to practical applications in magnetohydrodynamic (MHD) 
generators, pumps, accelerators and flowmeters. Various forms of the problem with different 
combinations of conducting and non-conducting walls have been considered by Shercliff,' Chang 
and Lundgren,' Gold,3 Hunt4 and others. G ~ i n b e r g ~ . ~  has formulated the problem with perfectly 
conducting walls parallel to the applied field and non-conducting walls perpendicular to the 
field, and attempted an exact analysis using a Green's function method; but his result is incomplete. 
Later Hunt and Stewartson' and Chiang and Lundgren' used boundary layer methods to cast 
the same problem in the form of an integral equation. Lately Singh and Agarwal' followed 
Grinberg's solution procedure for the analytical part, but they solved the resulting singular 
integral equation numerically since it could not be solved easily. Hunt and Williams'O investigated 
the MHD flow between two parallel non-conducting planes. Wenger' presented a variational 
formulation that gave exact solutions for the velocity profile and electric potential distribution 
for a duct with mixed boundary conditions, but the analysis was of a very complicated nature. 
Recently, Wu12 and Singh and Lal13-15 have applied finite element methods to solve steady 
and unsteady MHD channel flow problems for different wall conductances. 
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In all of these studies except Wenger's,'' each of the walls of the channels or ducts is either 
completely conductor or completely insulator, but not a mixture of two. In this paper, we are 
concerned with the flow of an incompressible, viscous, electrically conducting fluid through an 
infinite channel with an external magnetic field applied transverse to the flow. One of the 
boundaries (a wall of the infinite channel) perpendicular to the magnetic field is taken to be 
partly insulating and partly perfectly conducting. The problem is solved analytically by reducing 
it to the solution of a Fredholm integral equation of the second kind, which has been solved 
numerically. Several valid approximations have been made for large Hartmann numbers in the 
calculations of the kernel and the right hand side function of this integral equation. All the 
infinite integrals obtained in the solution are transformed to finite integrals which contain 
modified Bessel functions of the second kind. In this way, we have avoided the difficulties 
associated with the computation of infinite integrals with oscillating integrands, the convergence 
of which is affected for large values of the Hartmann number. 

BASIC EQUATIONS 

The fluid is taken as viscous, incompressible and having uniform electrical conductivity. It is driven 
down the infinite channel by means of a constant applied pressure gradient, and throughout its 
passage is subjected to a constant and uniform imposed magnetic field which is applied 
perpendicular to the direction of the flow. The magnetic field is also taken perpendicular to the 
boundary which is partly insulating and partly perfectly conducting. It is also assumed that the 
fluid motion is fully developed, steady and laminar. 

The equations governing this problem have been derived by Shercliff' Dragos,16 and others. 
The z-axis is taken as parallel to the fluid velocity and the x-axis is parallel to the imposed 
uniform magnetic field H ,  existing outside of the fluid. All physical quantities, except pressure, 
are assumed to be independent of z; the velocity vector has only a z-component, V,(x,y) ,  and 
the magnetic field vector takes the form H = (H, ,  0, H,(x, y)).  We also assume that displacement 
currents are negligible and that there is no net flow of current in the z-direction. So, the 
z-components of the equations are 

a V,  
ax qV2H, + Ho ~ = 0, 

where q = (gpJ ', which is known as magnetic diffusivity, 0 and pe are electrical conductivity and 
magnetic permeability, respectively, p is the coefficient of viscosity, P is the pressure of the fluid and 
V2 is the two-dimensional Laplacian operator. 

By using the relationship 

€3 = AH, (3) 
where B is the magnetic induction vector, the equations (1) and (2) are written in terms of B as 

where 

a V, 
ax qV2B, + Bo - = 0, (4) 
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Introducing dimensionless variables 

where 

vo = - L; (aP/azyP (9) 
is the characteristic velocity (mean axis velocity) and Lo is the characteristic length, we 
obtain the following equations for V(x ,  y) and B(x, y) (substituting x’ = x, y’ = y) :  

(10) 
av 
ax 

V 2 B  + M - = 0, 

aB 
V 2 V + M - =  - 1, (11) ax 

where 

M = BoLo JcI JP 

is the Hartmann number. 

of the problem in Figure 1 are as follows: 
Accordingly, the boundary conditions for equations (10) and (1 1) related to the configuration 

V(O,y)=V(a,y)=O, - c o < y < C o ,  (13a) 

B(a ,y )=O,  - 00 < y <  00, (13b) 

B(O, y )  = 0,  1 < lyl < 00, (1 3 4  

B,(O, Y )  = 0, 0 < lyl < 1. (134 
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ANALYTICAL SOLUTION 

The method of solving the system (10) and (11) subject to boundary conditions (13) consists of 
splitting the solution into two parts as 

(Bv) = (2) + (:)- 
Here ‘0’ refers to the flow when the wall at x = O  is insulated. We shall call it the primary 

flow. The solution corresponding to the suffix ‘1’ gives the correction due to the conducting part 
of the boundary, and we shall designate the flow due to it as secondary flow. Thus, we have 

d2Vo dB, 
dx2 dx 

d2B, dVo 
dx2 dx ’ 

-+M-=- l ,  

---+M-=O 

with the boundary conditions 

VO(O) = V,(U) = 0, 

B,(O) = Bo(a) = 0, 

and 

aB1 
ax ’ 

a Vl 
ax 

V2Vl + M-=O 

V2B1 + M-=O 

with 

On account of symmetry, we need to consider the solution only in the upper half of the xy-plane. 
The general solution of the system (15), (16) is given by 

V,(x) = A + BeMx + CePMx, 

Bo(x) = - - - (BeMx - CePMx) + D, X 

M 

where A ,  B,  C and D are constants. By making use of the boundry conditions (17) the primary flow 
is obtained as 

Vo(x) = 
U 

2 M s h ( F )  
[ ch( 7 )  - ch [ M( x -:)]I, 
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Bo(x) = 
U 

2M sh (7) sh [ M (x - z ) ]  - (x - z ) ,  
where sh(x) and ch(x) are the sine hyperbolic and cosine hyperbolic functions, respectively. 

To find the solution of the secondary flow, we define Fourier cosine transforms for V ,  and B ,  : 

Taking the Fourier cosine transform of equations (18) and (19) and the associated boundary 
conditions we obtain 

and 

V1(O, a) = P,(u, a) = 0, B,(u, a) = 0. (27) 
Solving equations (25) and (26) subject to the boundary conditions (27) yields 

where 

pa =(M2/4 + ~ 1 ~ ) ” ~  

Inverting equations (28) and (29) and making use of the remaining boundary conditions (20c) 
and (20d), we obtain the following dual integral equations for A(@):  

where c th (x) is cotangent hyperbolic function and 

c=- 

Choosing the integral representation for A(a) 

(33) 
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and noting that equation (31) is automatically satisfied on account of the identityIg 

s, J,(at)cos (bt) dt = H ( a  - b)/J(aZ - b’), (35) 

where J o ( x )  and H(x) are the Bessel function of the first kind of order zero, and the Heaviside 
function, respectively, equation (32) transforms to Abel’s equation 

(36) 

with 

P(Y) = CY + J l f ( t )  1: [ 1 - a Jo(at) sin (ya) da dt. 

In obtaining equation (36), use was made of another identity 

s,” Jo(a t )  sin (bt) dt = H ( b  - a)/J(b2 - a’). 

The solution of (36) is well known (see, for example, Reference 18). It is given by 

(37) 

Substituting for p(y) from equation (37) and making use of integral representations of Bessel 
functions, we finally arrive at the Fredholm integral equation of the second kind for f ( t ) :  

(40) 

where 

K(x, t )  = 1; at[ %th(p,a) - 1 Jo(at)Jo(ax)da. 
a 1 

At the time of writing, no analytical method is known to solve equation (40). It must, therefore, 
be solved numerically. There are a few advantages in putting the partial differential equations 
governing the flow in the form (40). First, we have been able to isolate the singularities at the 
junctions of insulating and conducting boundaries. Secondly, an integral equation is relatively 
easier to handle numerically than a set of partial differential equations. Thirdly, the system of linear 
algebraic equations resulting from discretization of the Fredholm integral equation of the second 
kind is diagonally dominant-theoretically at any rate-and is therefore guaranteed to yield a 
numerical solution. In practice, however, there are numerous computational considerations which 
must be taken into account, before attempting to solve equation (40) numerically. 

COMPUTATIONAL CONSIDERATIONS 

There are two main sources of possible trouble that we may encounter in obtaining the numerical 
solution of the Fredholm integral equation (40). First of all, we note that the kernel K(x, t )  in that 
equation, though convergent theoretically, has very poor convergence for computational 
purposes. Next, we observe that for large values of M ,  the kernel is of order M .  This necessitates an 
extremely large number of mesh points in the discretization scheme. Since the coefficient matrix for 
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the integral equation is dense, it sets implementation limits on the size of the matrix, which means 
that we cannot go beyond certain values of M. This is really a limitation of computer memory 
and time and is not a drawback of the technique chosen in this paper. 

Since we are primarily concerned with the MHD flow at intermediate to high values of 
Hartmann numbers (10 < M < 200) it is reasonable to approximate c th(paa) in equation (41) by 1. 
With this approximation and the identity.” 

Jo(at)Jo(ax) = - Jo(a( t2  + X’ - ~ ~ X C O S  8)”’)dO, 
n o  “ 

the kernel K(x, t )  can be transformed to a much more computationally efficient form by means of 
an identity (see Appendix I). We can rewrite equation (41) as 

where 

r’ = t 2  + X’ - 2tx cos 8 

and I , ,  I , ,  K O  and K ,  are the modified Bessel functions of the first and second kinds and of order 
zero and one, respectively. It is to be noted that the kernel is now in a more easily computable form. 

To solve the Fredholm integral equation (40), we replace the integrals by numerical quadratures 
based on Gauss’s formula, and a system of algebraic equations is obtained for the unknown 
function f in the of representation A(a) (equation (34)). By virtue of the equation for A(a), the value 
of the function f can be substituted back in P, (x, a) and El (x, a) (equations (28) and (29)) and then 
the secondary flow V ,  (x, y), B ,  (x, y) for the infinite channel problem can be found as 

The term sh[pa(x - a)]/sh(p,a) can be approximated by e-p=(2a-X) - e-P.” for large M, so 
V ,  (x, y), B ,  (x, y) can be transformed to the following forms (see Appendix 11): 

where 

K ,  -J[(tcos 8 + y)’ + (2a - x)’] (7 
J [ ( t  cos + y)’ + (2a - x)’l 

’1 d8dt. 
K ,  (YJ [ ( t  cos 8 + y)’ + x’] 

J [  ( t  cos 8 + y)’ + x’] - x  (47) 
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By adding the primary solution V,,, B ,  to the secondary solution V,  , B ,  , one can find the velocity 

The magnetic field on the conducting portion of the mixed boundary can be found directly from 
V(x, y) and the induced magnetic field B(x,  y) for the infinite channel problem. 

substitution of A(u) in B , ( x , y ) .  Simplifying we obtain 

which can be further transformed to the form 
arcch(l/y) 

B(0, Y )  = - f(ych 0) do. 
7 1 0  

(49) 

The function f was interpolated with Gauss-Legendre abscissae at the points ychfl, using 
Lagrange interpolation. 

NUMERICAL RESULTS AND DISCUSSIONS 

The velocity field and the induced magnetic field were calculated in the region 0 < x < a( = l)n 
0 < y < 2 using appropriate step sizes. For the velocity field near y = 0, finer meshes were chosen 
to obtain the desired accuracy in the results. Calculations have been carried out for Hartmann 
numbers 10,20, 50, 100 and 200. 

The system of linear algebraic equations arising from discretizing equation (40) was solved by 
calling the matrix solver LEQT2F on Honeywell Multics at the University of Calgary, Canada. 
This subroutine performs Gaussian elimination with pivoting and improved the results iteratively. 

The equal velocity lines and current lines (equal induced magnetic field lines) were obtained by 
using the SURFACE I1 contour package, which uses linear interpolation. The non-smoothness of 
some of the curves can be explained as due to it. 

In Figures 2-4 equal velocity lines have been drawn for 1 = 0.3 and for M = 20, 50, 200, 
respectively. We notice from these graphs that as Hartmann number M is increased, there is a 

Figure 2. Velocity lines for M = 20, 1 = 0.3 
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Figure 3. Velocity lines for M = 50, I = 0.3 
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Figure 4. Velocity lines for M = 200, I = 0.3 

formation of boundary layers near the non-conducting parts of the boundaries. In the core of 
the channel, for l y l >  1 the velocity is almost stationary and is equal to the maximum value 
of I/, whereas the region l y (  < 1 is mostly stagnant for large M .  

In Figures 5-7 current lines have been drawn for 1 = 0.3 and various values of M .  Again we can 
notice the formation of boundary layers for increasing values of M .  However, there is an interesting 
pattern of current lines. We can separate these lines by a value of B, say BCrit, which depends on M 
and 1. For B > Bcrit all current lines start from the conducting part of the boundary and form closed 
loops. For every positive value of B less than Bcrit there are three current lines, two of which start 
from the conducting part and symmetrically move with the channel (these current lines form the 
Hartmann layer at the mixed boundary). The remaining current line spans the entire length of the 
channel to the right of the region of the loops of the current lines characterized by B > Bcrit. Lastly, 
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Figure 5. Magnetic field lines for M = 20, I = 0.3 

for negative values of B, the current lines form the loops which turn back nearly at a distance equal 
to the conducting part of the boundary from the central line. These current lines form the 
Hartmann layer at the non-conducting boundary. 

We also note from these Figures that there is a parabolic boundary layer with thickness of order 
M -  ' I 2  at the point of discontinuity on the boundaries. This boundary layer is shown using dashed 
lines. 

The length of the conducting part 1 was varied keeping M fixed, and the results are shown in 
Figures 8- 11. As 1 increases, the same kind of behaviour for equal velocity lines, as outlined above, 
by increasing M ,  is exhibited. The effect of increasing 1 is that more equal velocity lines are forced to 
turn away from the central line, and this leads to further demarcation of the separate regions for 
current lines. 

Experiments on the flow of conducting liquids (e.g. mercury, liquid sodium) normally refer to 
channels of circular or rectangular cross-section. Flow through the latter may be expected to 
approximate the flow between parallel planes if one side of the rectangle is large compared with the 



MAGNETOHYDRODYNAMIC FLOW IN AN INFINITE CHANNEL 603 

N 
0 

0 
I 

9 

Figure 6. Magnetic field lines for M = 50, l =  0.3 

other, the applied magnetic field being perpendicular to the long side. Assuming a constant value 
of pressure gradient and taking one of the long sides to be partly insulated and partly conducting, 
one can set up an illustrative problem relevant to this analysis. 

For example, if the liquid is mercury at  20°C, the corresponding physical constants are,21 
p = 13,550 kg/m3 (density), ,u = 0-00155 kg/m s, D = 1.05 x lo6 mho/m and ,ue = 1 1  x lo-' mho/s 
ins MKS units. We may choose the characteristic length Lo = 0.03 m = 3 cm and the pressure 
gradient ap/az  = - 0.25 kg/m2 s2. The conversions to actual flow velocities and magnetic fields 
with units are performed through equations (7), (8) and (9) for M = 20, 50 and 200, and also the 
Reynolds number Re is checked in each case, since the flow is laminar. The new results are 
shown, with units, in Table I. We note from these figures that as M increases V, is decreasing 
and B, is small compared with B, .  

On each Figure, we have chosen the maximum equal velocity line and one current line to 
indicate the actual values offlow velocity and induced magnetic field with their units on these lines, 
respectively. 
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Figure 7. Magnetic field lines for M = 200, I = 0.3 

Table I 

M = 20 M = 50 M=200 M=lO 
V,,, = 0024 V,,, = 0.0096 V,,, = 0.0024 V,,, = 0.048 
B = 0.02 B = 0.01 B = 0.0025 B = 0.03 

and B = 0.007 

Chosen from Chosen from Chosen from Chosen from 
Figures 2 and 5 Figures 3 and 6 Figures 4 and 7 Figures 8-1 1 

v, = 14.5cm/s v, = 14.5 cm/s v, = 145 cm/s v, = 14.5 cm/s 
Re = 912 Re = 365 Re = 91.265 Re = 1825.3 
V, = 0348 cm/s 
B, = 255 gauss 

V, = 0.139 cm/s 
B, = 637 gauss 

V, = 0.0348 cm/s 
B, = 2555 gauss 

V, = 0.696 cm/s 
B, = 129 gauss 

x gauss x gauss x gauss x gauss 
B, = 1.2856 B, = 0.6428 B, = 0.1607 B, = 1.9 

for B=003  and 

for B = 0.07 
B, = 4.49 x 
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Figure 8. Velocity lines for M = 10, 1 = 0.1 
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Taking the derivative of J with respect to a 

Taking the second derivative of J with respect to a, 

Figure 9. Velocity lines for M = 10, I = 0 7  
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APPENDIX I1 

Consider the integral 
m 

R = [ e - k ~ c u ’ + a ’ ) c o s ( ~ ~ ) J O ( ~ t ) d a .  

1 1 ,  

Since 
J o  

J0(z )  = - cos (Z cos 6)  d6 
7 1 0  s’ 

I l- 
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0 
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(55 )  

Figure 10. Magnetic field lines for M = 10, I = 0.1 
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Figure 11. Magnetic field lines for M = 10, I = 0.7 

the integral (55) can be written as 

R = 1 1; e-kJ(U2+C2) s’ cos (at cos 8) cos (ycr) dB dcr, 
n 0 

=‘S:[ 2n ~ ~ e - k ~ J ‘ . ’ + a z ) c o s c r ( t c o s 8  +y)dcr 

+ 1: e-kJcu’+a’)cos (t cos 8 - y)da do. 1 (56) 

For the evaluation of the infinite integrals above we make use of the identity” 



MAGNETOHYDRODYNAMIC FLOW IN AN INFINITE CHANNEL 609 

By taking the derivative of (57) with respect to B we arrive at 
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